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ABSTRACT

Systems neuroscience relies on two complementary views of neural data, charac-
terized by single neuron tuning curves and analysis of population activity. These
two perspectives combine elegantly in neural latent variable models that constrain
the relationship between latent variables and neural activity, modeled by simple
tuning curve functions. This has recently been demonstrated using Gaussian pro-
cesses, with applications to realistic and topologically relevant latent manifolds.
Those and previous models, however, missed crucial shared coding properties of
neural populations. We propose feature sharing across neural tuning curves which
significantly improves performance and helps optimization. We also propose a so-
lution to the ensemble detection problem, where different groups of neurons, i.e.,
ensembles, can be modulated by different latent manifolds. Achieved through a
soft clustering of neurons during training, this allows for the separation of mixed
neural populations in an unsupervised manner. These innovations lead to more in-
terpretable models of neural population activity that train well and perform better
even on mixtures of complex latent manifolds. Finally, we apply our method on
a recently published grid cell dataset, and recover distinct ensembles, infer toroidal
latents and predict neural tuning curves in a single integrated modeling framework.

1 INTRODUCTION

Neural population activity can appear high-dimensional (Stringer et al., 2019), yet much recent work
has reported that neural populations in higher brain areas are often confined to low dimensional
subspaces (Yu et al., 2008; Harvey et al., 2012; Mante et al., 2013; Stokes et al., 2013; Shenoy et al.,
2013; Kaufman et al., 2014; Sadtler et al., 2014; Gallego et al., 2017; Elsayed & Cunningham, 2017;
Gao et al., 2017). The bread and butter of classic systems neuroscience is linking neural activity
to experimentally controlled or observable covariates such as orientation (Hubel & Wiesel, 1979),
pitch (Lewicki, 2002), movement (Churchland et al., 2012; Kao et al., 2015), posture (Mimica et al.,
2018) and orientation in space (Taube et al., 1990). These two parallel streams of neuroscientific
research might at first seem to be at odds with each other (Kriegeskorte & Wei, 2021); tuning studies
of individual neurons give a very different picture of neural coding than distributed representations
over high-dimensional neural populations. However, they combine elegantly in the form of (neural)
latent variable models (LVMs, see Lawrence, 2003; Yu et al., 2008; Pandarinath et al., 2018).

In their basic form, neural LVMs find the low-dimensional structure of neural population activity,
for instance, when a large network of neurons is coding mostly along few linear subspaces (Mante
et al., 2013; Gao et al., 2017). One advantage is that these models can help us discover latent
variables which may not be tracked as classical covariates in systems neuroscience. However, when
the mapping from latent variables to predicted spike rate (decoding) is fully unconstrained, e.g., by
using a multi-layer neural network, we lose the simple biological interpretation of tuning curves.

In an effort to maintain a biologically interpretable relationship between the latent variables and the
neural activity, recent work has proposed more constrained decoders approximating simple tuning
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Figure 1: Model outline. Our main contributions are outlined in purple. The input is a matrix of
neural spiking activity. The encoder (1) is a multilayered neural network. The latent spaces are
separate with, potentially, different topologies (e.g. R1 and T2). The decoder is a parametric tuning
curve model with feature sharing (2). The ensemble detection is a weighted (ideally one-hot) selec-
tion of latent spaces for each neuron (3). For decoding of the activity, we assume Poisson spiking.

curves. These tuning curves have been parameterized as Gaussian processes in the framework of
Gaussian process latent variable models (GPLVM, Wu et al., 2017; 2018). Through the tuning curve
approach, we limit ourselves to biologically plausible solutions that reveal the actual algorithmic
structure of the neural system. Thus, LVMs with simple tuning curve decoders bring together the
view on neural populations as distributed representations of low-dimensional latent variables, along
with the biologically meaningful perspective on individual neural tuning properties.

Some neural populations exhibit topologically interesting latent manifolds (Singh et al., 2008;
Peyrache et al., 2015a; Gardner et al., 2022). For instance, grid cells represent navigational space in
toroidal coordinates of spatially repeating two dimensional hexagonal grids (Hafting et al., 2005).
They appear in different ensembles, commonly referred to as modules, each coding for space at
different resolutions (Fyhn et al., 2007; Stensola et al., 2012). Thus, the complete population of grid
cells is best described as a collection of ensembles of neurons, where neurons in each ensemble have
tuning curves of specific shapes on their respective toroidal latent representations of space (Curto,
2017). By contrast, a two-dimensional Euclidean representation might also account for the complete
population of grid cells, but would also completely obscure their efficient and theoretically interest-
ing coding scheme for representing space (Solstad et al., 2006; Sreenivasan & Fiete, 2011; Mathis
et al., 2012; Wei et al., 2015; Klukas et al., 2020). A driving motivation behind this work was to
model this beautiful neural structure with an LVM that separates the algorithmic and biological parts,
while uniting shared tuning properties to be more accurate and trainable than previous approaches.

We propose to train neural LVMs that not only have simple tuning curve decoders, but are also fully
differentiable. Thus, we use a flexible encoder, i.e., a neural network as in variational autoencoders
(Kingma & Welling, 2014; Rezende et al., 2014), and a simple tuning curve based decoder, akin to
GPLVM. The encoder can readily be made convolutional to allow for better latent estimation from
adjacent time points. Additionally, we implement a feature basis for the tuning curve shapes in
the decoder which can be shared across neurons. We demonstrate that the neural feature sharing,
along with the variational end-to-end training, vastly improves both the training stability as well
as the final performance of neural LVMs. Moreover, we propose hybrid inference at test-time and
show that this, again, brings a considerable improvement in performance. Finally, we integrate
the problem of separating distinct ensembles of neurons into our approach — a crucial task for
the discovery of different biological structures and the precise mathematical understanding of their
topological tuning properties. An illustration of our approach is provided in Fig. 1.

To summarize, our full model performs the task of finding latent variables, separating distinct en-
sembles of neurons and fitting the prototypical tuning curves on each ensemble’s latent space in a
single efficient framework. In the following, we therefore refer to our model as feature sharing and
ensemble detection Latent Variable Model or faeLVM.

2 BACKGROUND

Let λi be the instantaneous firing rate of a neuron i. To relate this to the spiking activity xi, we
assume a Poisson noise model xi ∼ P(λi). We define latent variables z := {z1, . . . , zk} (in distinct
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Figure 2: The feature sharing as-
sumption. A, Tuning curves for 26
head direction tuned neurons. B,
The same 26 tuning curves, shifted
and scaled to visualize structural
similarity, along with a standard
Gaussian shape (dotted line).

spaces and possibly with different topologies) that change over time and to which neurons are tuned.
More precisely, we suppose that there exists a deterministic function fi, which for every neuron i
relates the latent variables to the firing rate, i.e., λi = fi(z). One additional assumption is that each
fi is only sensitive to a subset Ji of latent variables and invariant to all others. That means, for two
values z, ẑ with zj = ẑj ∀j ∈ Ji and zj ̸= ẑj ∀j /∈ Ji we have fi(z) = fi(ẑ).

As a concrete example, consider a mixed population of head direction neurons I1 and a grid cell
module I2. The former are tuned to a circular latent variable z1 ∈ S1 (Peyrache et al., 2015a; Ry-
bakken et al., 2019; Rubin et al., 2019; Chaudhuri et al., 2019), the latter to a toroidal latent variable
z2 ∈ T2 (McNaughton et al., 2006; Fuhs & Touretzky, 2006; Gardner et al., 2022). That means, for
every neuron in the head direction ensemble we have Ji = {1}, ∀i ∈ I1; whereas for every neuron in
the grid cell ensemble we have Ji = {2}, ∀i ∈ I2. Conceivably, there exist shared latent variables,
e.g. attentional state, running speed or pupil dilation, to which multiple or even all neurons are tuned.

Within each ensemble, the tuning functions fi, i ∈ Ij are likely to have similar structure (Albright,
1984; Taube et al., 1990; Hafting et al., 2005). This is the concept of feature sharing (Klindt et al.,
2017), which in visual systems neuroscience has proven to be a useful assumption (Batty et al., 2017;
Sinz et al., 2018; Ecker et al., 2018; Walker et al., 2018; Cadena et al., 2019; Ustyuzhaninov et al.,
2019; Cotton et al., 2020; Zhuang et al., 2021; Burg et al., 2021; Bashiri et al., 2021; Safarani et al.,
2021; Franke et al., 2021; Lurz et al., 2021; Nayebi et al., 2021; Seeliger et al., 2021; Goldin et al.,
2021; Ustyuzhaninov et al., 2022). In vision, this can be motivated by the fact that visual (especially
early retinal) neurons form mosaics, that tile the input space and compute the same response function
(i.e., tuning curve) across space (Wässle & Riemann, 1978). Precisely, let fµ denote the response
function of a visual neuron with receptive field center µ ∈ R2, let T : R2 → R2 be a spatial
translation, and let z : R2 → R1 be an image (with slight abuse of notation, z is, here, a function
that assigns a grey scale value to every position in two-dimensional space, i.e., an image). Let us
think of fi = fµ and fi′ = fT (µ) as two neurons of the same type (i.e., same tuning curve shape) but
with their receptive field centers at different locations µ and T (µ). Then we have fi(z) = fi′(z ◦T ).
Thus, for visual neurons we assume translational equivariance.

Consequently, we should be able to marginalize over spatial translations to learn the shared structure
among all fi as demonstrated in Klindt et al. (2017). The same intuition holds for populations of au-
ditory neurons that are equivariant to pitch, i.e., that have similar tuning properties translated across
log-frequency space (Kell et al., 2018; Kell & McDermott, 2019) and possibly other sensory neu-
rons such as somatosensory populations (Lieber & Bensmaia, 2019). But it also holds true for higher
cognitive neurons, such as the ones discussed above, where, for instance, each grid cell is tuned to a
different location on the torus and the receptive fields (tuning curves) across grid cells are remarkably
similar in shape (Hafting et al., 2005; Fyhn et al., 2007; Gardner et al., 2022). Thus, we propose to
introduce feature sharing also in this case. More precisely, we argue that every fi within an ensem-
ble Ij , should be modeled by a shared tuning curve function gj(z, θi) = fi(z) that applies a simple
neuron specific transformation, parameterized by θi, to obtain the specific fi of each neuron. For
instance, in the case of a neuron-specific spatial translation (µi, the receptive field center as above)
and scaling (αi), we would define θi = {µi, αi} and thus gj(z, θi) = αigj(Tµi(z), θ0) = fi(z)
(θ0 yielding simply the centered prototype of the shared tuning curve). Evidence for this assump-
tion is provided in Fig. 2, where centering and rescaling all tuning curves of head direction selective
neurons on S1 (recorded by Peyrache et al., 2015b) clearly exhibits a shared, Gaussian-like tuning.

In visual perception there is translational equivariance, however, only among cells of the same types
(Wässle & Riemann, 1978). Therefore, previous work proposed feature sharing in combination with
functional cell type identification (Klindt et al., 2017). Specifically, equating neural ensembles with
cell types in the retina, this posits that all neurons in a given ensemble Ij be tuned to the same set of
latent variables Jj , i.e., Ji = Jj , ∀i ∈ Ij . As an example, the toroidal structures zj ∈ T2 of different
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grid cell ensembles Ij only become apparent after the successful separation of distinct modules with
different spatial resolutions (Gardner et al., 2022). Thus, we argue that feature sharing hinges on the
successful identification and separation of distinct neural ensembles in a mixed population recording.

The problem of ensemble detection can be formalized as partitioning n recorded neurons I =
⋃k

j Ij
into k non-empty subsets Ij ∩ Ij′ = ∅, ∀j ̸= j′. Unfortunately, this is a combinatorial problem with
kn possible states. Even for a ‘simple’ problem such as clustering neurons into k = 2 groups, this
already exceeds the number of atoms in the universe (1082) at n ≥ 273. With modern neuroscience
routinely yielding thousands of recorded neurons per experiment (Jun et al., 2017), brute-force ex-
haustive search is clearly not a viable approach. To mitigate this issue, we propose a soft-relaxation
of the clustering problem. Specifically, we define a convex combination of weights over responses
derived from tuning curves on each latent variable, and train the neurons to maximize their likeli-
hood given those weights in a differentiable fashion (explained in more detail in the next section).

3 METHODS

As above, we denote neural activity x and the collections of latent variables as z. We want to learn
a latent variable model p(x, z) = p(x|z)p(z). We choose a variational autoencoder (VAE, Kingma
& Welling, 2014), which maximizes a lower bound to the data likelihood called the evidence lower
bound, which necessitates the introduction of an approximation to the posterior distribution, i.e., a
variational (input dependent) posterior with non-zero support across the domain, q(z|x) > 0, ∀z, x.

At test-time, we focus on a precise estimate for the latents z. These latents are usually inferred with
the encoder that computes the approximate variational posterior q(z|x). Here, we aim to further
refine this estimate by performing inference based on the decoder p(x|z). Technically, this can be
achieved by directly performing gradient descent on the latents, with the decoder starting from the
encoder estimate (Schott et al., 2018; Ghosh et al., 2019) (see Appx. J for further details).

For Euclidean latent spaces z ∈ Rn, we can simply rely on the standard VAE framework, using a
Normal (N ) posterior and prior for those dimensions. For spherical latent spaces Sn, we use a
wrapped Normal distribution (wN ), akin to previous work (Falorsi et al., 2019; Jensen et al., 2020),
which satisfies the topology of the latent space. For the relevant case of a toroidal latent space, we
can use T2 = S1 × S1, together with the fact that the variational posterior is, usually, assumed to
factorize across dimensions. This factorization also helps keep the equations the same when working
with multiple latents (corresponding to multiple ensembles), i.e., z = {z1, ..., zk}.

More precisely, we assume that each latent zj lives either in Euclidean space Rnj or on a torus Tnj =
S11 × . . .× S1nj

(with S1 = T1). Further, we let our prior factorize (Kingma & Welling, 2014), i.e.,

p(z) =

k∏
j=1

p(zj), p(zj) =

nj∏
l=1

p(z
(l)
j ), z

(l)
j ∼

{
N (0, 1), if zj ∈ Rnj

wN (0, 1), if zj ∈ Tnj
, (1)

giving uniform prior distributions. Analogously, we let our variational posteriors factorize as

q(z|x) =
k∏

j=1

q(zj |x), q(zj |x) =
nj∏
l=1

q(z
(l)
j |x), z

(l)
j ∼

{
N (µ(x), σ(x)), if zj ∈ Rnj

wN (µ(x), σ(x)), if zj ∈ Tnj
. (2)

Here, the distribution-specific parameters µ(x) and σ(x) are themselves input dependent, and given
by a functional mapping which is learned using the reparametrization trick. We use a temporal (1D)
convolutional neural network to parameterize q. To enforce circular latents, we let the encoder output
vectors in R2, which we subsequently normalize to avoid discontinuities when estimating angles
(Zhou et al., 2019). We remark that although a convolutional filter was used, temporal smoothness
was not explicitly included in the latent dynamics of z in the model used for producing the results
in Sec. 4. It is, however, a straightforward inclusion to incorporate (see Appx. D.1).

For the decoder, in clear contrast to standard VAEs, we pick a simple parametric function f to
parameterize the reconstruction term p(x|z). As argued above, this is a crucial choice in the interest
of defining simple biologically meaningful link functions (i.e., tuning curves) between (potentially
complex) latent variables and neural activity. Specifically, we have

p(xi|z) ∼ P(fi(z)), fi(z) =
∑
j

wijgj(zj , θi), (3)
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Figure 3: Schematic outline of model evaluation. Evalua-
tion pipeline as suggested in Pei et al. (2021). During training,
the models are all trained on spikes from ‘train’ neurons (1),
learning their tuning curves, and the latent variable represen-
tation which is used to infer tuning curves on ‘test’ neurons at
train time (2). For testing, we fix all tuning curve shapes and
infer the latents from test data (3), before performing spike
prediction on held-out data from held-out neurons (4). Thus,
our encoder only receives train neurons (1, 3) to infer latents.

where P(fi(z)) is a Poisson distribution with rate fi(z), and the weights for each neuron i the output
of a softmax function, such that wij > 0 and

∑
j wij = 1. That is, wij models the participation

of neuron i in ensemble j. The function gj(zj , θi) ∈ R characterizes the (shared) tuning curves of
neurons in the latent space of zj , and takes as input the corresponding latent zj and a (set of) neuron
specific parameter(s) θi, to produce the response of the neuron based on each latent space.

The function gj(zj , θi) can be specified in a multitude of ways, while still embodying the concept of
feature sharing. Here we present two possible options: the first simply assumes a single heat kernel
shape (i.e., Gaussian-like bump) with shared tuning width σ for all neurons. Since neural activity is
non-negative, we model the log of the instantaneous firing rates as

log gj(zj , µi) = −dj(zj , µi)

σ2

2

, (4)

where µi denotes (as above) the center of the i-th neuron’s tuning curve and dj(·) a distance function
in the space of zj (i.e., Euclidean distance in Rn and geodesic distance in Tn). The second, and more
flexible, feature space consists of a sum of M weighted (βm) Gaussian basis functions (i.e., a spline)

log gj(zj , µi) =
∑
m

βm exp

[
−dj(zj , µm − µi)

2

σ2
m

]
, (5)

with center µm and width σm of the m-th basis function. We consider three variations of faeLVM:
sharing of features by utilizing Eq. 4 to model gj with a shared (bump) heat kernel (faeLVM-b),
sharing of features through Eq. 5 using a Gaussian basis (faeLVM-s), as well as a model allowing
each neuron to learn its own set of the basis weights in Eq. 5, i.e. no shared features (faeLVM-n).

4 EXPERIMENTS

4.1 SIMULATIONS: FEATURE SHARING

Motivated by the evaluation pipeline in Pei et al. (2021), we split our data into four parts (Fig. 3),
exploring the benefits of feature sharing in the following way: We generate z ∈ S1, a circular
1D latent variable and simulate spikes according to a Poisson distribution with heat kernel tuning
curves (see also Appx. F for a retinal ganglion simulation with calcium dynamics). We fix Ttest and
Ntest (1000 and 30), and investigate model performance based on fixed Ttrain and varying Ntrain, and
vice versa. For each condition, we repeat the experiment over 20 seeds (while data is different for
each repeat, all models are trained on the same seed, ensuring valid comparisons), reporting mean
negative log-likelihood (NLLH) and geodesic error (GE) on test data (lower numbers are better,
in both cases). We also compare our models with mGPLVM (Jensen et al., 2020), an extension of
GPLVM (Wu et al., 2018) designed for inference on non-Euclidean spaces, as well as a conventional
VAE using a standard multi-layer perceptron decoder (MLP; with essentially a reverse architecture
of the encoder). As mGPLVM assumes a Gaussian noise model, the Poisson NLLH is unsuitable as
a measure, hence it is only included when evaluating latent recoveries.

Fig. 4A-B clearly show the regime where feature sharing excels: datasets with a satisfactory number
of neurons, but with short recording times. This coincides well with the current state-of-affairs for
neural recording techniques, where experiments are usually limited by the possible experimental
length, not by the amount of recordable neurons (Stevenson & Kording, 2011). Moreover, even with
further technical innovations, we may eventually be able to record from all neurons, but we will
likely never be able to record during all possible natural inputs or behaviors.
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Figure 4: Latent and Rate Prediction. The models faeLVM-n,s,b are described in the main text,
mGP is the model from Jensen et al. (2020), VAE a traditional approach using an MLP decoder.
A, Mean NLLH of predicted test neuron rate, as a function of amount of training neurons. As the
performance is averaged over 20 seeds of varying data, error bars would also reflect the variability
in NLLH across data, resulting in inappropriate visualization. Hence, we report the mean rank of
20 seeds for each model at each condition, in an effort to more appropriately capture the variability
of the models. B, Same as A, now as a function of training time points. C, Mean GE between true
latent and inferred latent, on test data, with corresponding SEM error bars, as a function of number
of training neurons. D, Same as C, now as a function of training time points.

We also remark that while faeLVM-n seems to performs better on rate prediction in the low neuron
regime (Fig. 4A), the performance of LVMs ultimately hinges on how well the models can recover
the correct latent variable. In the setting of latent recovery (Fig. 4C-D), we see that feature sharing
is evidently beneficial both in low neuron- and low recording-time regimes. faeLVM-b outperforms
the other models, perhaps somewhat expected given the shape of the synthetic tuning curves, while
all faeLVMs outperform both mGPLVM and VAE. We also observe that while mGPLVM, which
uses tuning curve decoders, is more interpretable, it is worse than neural network decoders. How-
ever, our approach with feature sharing closes that gap and even improves upon the existing VAE
method, thus highlighting the importance of sharing features; more accurate inference, while also
being interpretable. Note that although the faeLVMs leverage the benefit of a convolutional layer
(which mGPLVM does not, being a non-convolutional model), we emphasize that the faeLVMs still
outperforms mGPLVM, even after reducing the convolutional filter size down to 1, which forces the
model to infer the latents independently at each time point (see Appx. E).

4.2 SIMULATIONS: ENSEMBLE DETECTION

Figure 5: Ensemble Detection. Ensemble detection accuracy, with corresponding SEM error bars,
on two (A) and three (B) equally sized ensembles of neurons tuned to separate S1 latent variables.
The models are: k-means on PCA reduced data (‘raw-pca’), k-means on PCA reduced covariance
matrix of the data (‘cov-pca’), supervised clustering based on the mutual information scores between
the cell responses and the latent variables, faeLVM with shared heat kernel tuning curves (‘faeLVM-
b’), and the same model optimized over 5 seeds, selecting the one that produced the highest LLH
(‘faeLVM-b5’). Chance levels are computed from 100, 000 random labels with optimal permuta-
tions. C, Relation between likelihood and accuracy for different data amounts.

Next, we shift our focus to the challenge of ensemble detection, comparing the performance of
faeLVM-b against other common methods. Specifically, we contrast against clustering methods (see
Appx. C for more details) that either i) perform k-means clustering on dimensionally reduced neural
activity over time (loosely inspired by Lopes-dos Santos et al., 2011; Baden et al., 2016; Hamm et al.,
2021), or ii) perform clustering on the neural covariance matrix (loosely inspired by Carrillo-Reid
et al., 2015). As an additional upper bound to the achievable performance, we include a supervised
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clustering method that receives both the mutual information score between each neuron’s activity,
and the true latent variables, as input. We run our model over five different random seeds and pick
the run that yields the highest LLH (faeLVM-b5 in Fig. 5), a fair approach as the likelihood is an
unsupervised metric (k-means is run over 100 seeds, picking the one with the lowest inertia).

The setting we chose for these experiments was the separation of ensembles of neurons that live on a
ring, i.e. S1. The comparison methods failed to separate the ensembles when scaling up to neural
activity on a torus, in contrast to faeLVM, which further highlights the novelty of an unsupervised
method that can accomplish this task (see Sec. 4.4 for tori, and also Appx. I for an additional
ensemble separation ablation). We tested the accuracy on separating two and three distinct (no
shared latents across ensembles) neural ensembles of equal size on rings, in addition to investigating
accuracy for all models as a function of available data points (recording length).

Fig. 5A-B shows that our model outperforms both comparison methods and quickly approaches
the performance of the supervised upper bound, for both two and three rings. This is even more
pronounced for the model selected based on LLH — a viable option when the analysis result war-
rants additional computing time. Fig. 5C shows that the relationship between ensemble detection
accuracy and LLH is monotonically increasing. Thus, the unsupervised likelihood score is indeed a
good proxy to arbitrate between different optimization runs.

4.3 REAL DATASETS: HEAD DIRECTION DATA

Figure 6: Application to head direction data. A, Variational mean of faeLVM-n plotted against
recorded mouse head direction (for additional visualizations, see Appx. H). We trained 20 models,
selecting the one with highest training likelihood on training neurons, before performing inference
at test-time. B, True test neuron spikes (grey), and predicted test neuron rates (black) from the model
used in A, per bin, for three randomly selected neurons. C, NLLH of test neuron rate, over 20 seeds,
as a violin plot. Performance of the best model, based on train LLH, is indicated by the black dot.
D, Same as C, but comparing GE between recorded head direction and inferred latent, on test data.

Transitioning to real datasets, we first apply our models to data from Peyrache et al. (2015b); more
specifically the awake trials from the dataset labeled Mouse 28, session 140313, recorded from the
anterodorsal thalamic nucleus (ADN). Recordings yield approx. 35 min. of data, which we bin in
100 ms bins, before separating it with a train-test split of 95%− 5%. 3 neurons are allocated as test
neurons (out of 26 total) and we run 20 seeds of each model, selecting the best performing model for
visualization (faeLVM-n). The inferred latent (Fig. 6A) is observed to match the true head direction
to a high degree, and the model is able to predict rates on test neurons (Fig. 6B), even though the
average and peak activity over test bins are quite low (∼ 1 and 5 Hz respectively) for the first two.

As we can see from Fig. 6C, the unconstrained model (faeLVM-n) outperforms the other two. This
is not an unsurprising result, given the model’s higher complexity and the sufficiently large amount
of training data. As for the latent prediction, mGPLVM and the traditional VAE (Fig. 6D) are close
in comparison to the performance of faeLVM-s, although less accurate than faeLVM-n. We also note
that the VAE does perform better on the rate prediction, which, conceivably, might be explained by
the fact that it is not constrained by a particular tuning curve model and thus might learn interactions
that incorporate non-head direction variables in an effort to improve its rate prediction. Training
multiple models and making a selection based on train LLH generally correlates well with solid
results on the test set, as also shown in Fig 5C. Note that faeLVM-b achieves much more consistent
optimization results over different random initializations, suggesting a typical bias-variance tradeoff.

Overall, we recognize that while there are differences in performances, all models recover the correct
circular manifold. The faeLVMs however, are noticeably faster (∼ 5 min. run time for one seed, on
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Figure 7: Application to grid cell data. A, Learned ensemble weights. Neurons are ordered by de-
creasing spatial information, dashed line separates first and second reported module (Gardner et al.,
2022). B, Greedy test for each neuron, checking which latent provides higher likelihood (i.e., one-
hot ensemble weights), colored by reported module. C, Classification accuracy when successively
removing neurons with low spatial selectivity. The same number of neurons were removed from
each ensemble, starting with least spatially informative ones. Accuracy is measured against super-
vised ensemble detection from Gardner et al. (2022). D, Rate map of every 25th neuron, first grid cell
module (smoothed for visualization purposes). Maps shown as function of rat’s position in arena, as
well as inferred coordinates on latent torus. Red circles indicate inferred receptive field mean and
width (SD) for the heat kernel (i.e., Gaussian-like bump). E, Same as D for second module. For a
full set of rate maps, as well as latent dynamics, see Appx. G & H.

a CPU), compared to mGPLVM (∼ 50 min. run time for one seed on a GPU). While not critical in
the case of this particular dataset, it is paramount when inferring latents of higher dimensionality.
We also note that while the circular manifold was in this case known, it is possible to do model
selection over different latent spaces (toroidal, circular, planar, etc.) as was demonstrated in Jensen
et al. (2020). Thus, it is not strictly necessary to know the latent topology when applying our method,
rather it allows for the restriction of possible models to a limited hypothesis class.

4.4 REAL DATASETS: GRID CELL DATA

Finally, we apply the complete model pipeline to data recorded from the medial entorhinal cortex
(MEC) of a freely moving rat (Gardner et al., 2022). Neurons in the MEC are selective to a number
of features like space (Fyhn et al., 2004), head direction (Sargolini et al., 2006), speed (Kropff et al.,
2015), as well as conjunctive representations of the three (Sargolini et al., 2006; Hardcastle et al.,
2017), though most demonstrate a strong preference for single features (Kropff et al., 2015; Tukker
et al., 2022). We consider data from the rat R, day 1-session, using recordings from neurons labeled
module 2 and 3, considering 149 and 145 non-conjunctive neurons respectively. Spike data was
binned in 100 ms bins, after removing periods in time when the rat was considered stationary (speed
< 2.5 cm s−1). Recordings from both the open field and maze experiments yields approx. 170 min.
of data. We train 20 models from different seeds, selecting the one with highest in-sample likelihood.

Compared with the modules discovered in the dataset (Gardner et al., 2022), our model’s results
coincides with an accuracy of 0.83. The inferred weights (Fig. 7A) show a clear separation between
the two modules, becoming less distinct as the neurons’ spatial information decreases. This is also
reflected in Fig 7B, where neurons further away from the diagonal tend to be more accurately classi-
fied. However, we note that the original separation of neurons into ensembles is not an intrinsic truth;
a number of the less informative neurons exhibit structurally ambiguous rate maps (see Appx. G), a
possible indication that they may belong to a different ensemble altogether. Excluding these neurons
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while evaluating the model (Fig. 7C), we observe a significant increase in performance, reaching
0.90 accuracy after removing approx. 50 of the least informative neurons from each ensemble.

Fig. 7D-E show a selection of rate maps for neurons from both ensembles. We see that the model
infers toroidal decodings that keep the structural integrity of the receptive fields, akin to the findings
in Gardner et al. (2022). The inferred centers and widths also correspond well with the rate maps. We
note that, while promising, the dataset included here contains just 294 of the 2460 neurons originally
recorded and that the full dataset (currently not available) would require additional steps to determine
the number of ensembles, the corresponding shapes and allow for some degree of conjunctivity.

5 CONCLUSION

In this paper we provide a proof-of-concept that the paradigm of share and divide is a successful
application of the old idea of carving nature at the joints,1 in the sense that similar observations
are grouped while differences are highlighted. This principle, instantiated in a group equivariant
computation core and a cell-type specific readout, has been successfully deployed in visual neuro-
science; we show that it also provides an excellent inductive bias (or prior) in the case of higher
cognitive variables such as (but not necessarily limited to) head direction or position in space. It
is advantageous from a statistical perspective to leverage the similarity in tuning functions across
neurons, as well as from a biological point of view, as finding protoypical tuning curves can help us
unravel the common tuning properties across individual neurons.

The idea of separating ensembles is at the core of the scientific endeavor where the task is to group
our observations of nature into distinct categories. In the case of grid cell modules, it is absolutely
crucial, as the topological properties that define this class of neurons are completely hidden when the
separate ensembles of different spatial resolution are not properly distinguished. One might wonder
whether other brain areas such as primary visual cortex, for which a power law in the population
activation space has been stipulated (Stringer et al., 2019), may not resolve into simpler underlying
topological ensembles of neurons, such as the special orthogonal group of three-dimensional rota-
tions SO(3) (vision), 2-spheres S2 (Singh et al., 2008), or the Klein bottle shape of oriented and
phase shifted wavelets (Carlsson et al., 2008) (relevant to multiple sensory modalities).

Furthermore, the assumption of feature sharing relies on an equivariant neural code, such as the
approximate translation equivariance in the visual system, which certainly is an abstraction from the
actual inter-neural variability that exists in the real world. In some cases, it might be that neurons
are better described along some continuous space of variations, rather than by a fixed set of discrete
prototypical tuning curves (Ustyuzhaninov et al., 2022). On the other hand, if we can identify the
parameters (e.g., tuning width) that describe the continuous variations across neurons and separate
them from the stable features of tuning curves (e.g., Gaussian-like heat kernel shape), we can use
that to build a more flexible parametric (but still shared) feature basis. Examples of such approaches
include rotation (Ustyuzhaninov et al., 2019), kinetic (Zhao et al., 2020) or more general nonlinear
modifications (Shah et al., 2022) to shared feature spaces. Further challenges to the feature shar-
ing idea could arise from recent findings of representational drift (Rule et al., 2019) and location-
(Qiu et al., 2020) or context dependent tuning (Kanter et al., 2017), although future directions might
consider addressing these in the model. Other limitations are the fact that the grid cell torus is hexag-
onal, while we use an orthogonal basis; further analyses might reveal if the encoder compensates for
that, e.g., by adjusting the distribution of speeds on the torus per direction.

Finally, although the choice of variational posteriors might at first seem restrictive, we would ar-
gue that the corresponding topologies (circles, tori, Rn) are natural choices for latent spaces and
likely to keep appearing in the brain, as is suggested in recent work (Kriegeskorte & Wei, 2021).
Other authors conjectured that, e.g., prefrontal cortex deploys grid cell-like codes to explore phys-
ical (Doeller et al., 2010; Jacobs et al., 2013) and conceptual spaces (Constantinescu et al., 2016;
Bao et al., 2019), as well as rules in a reinforcement learning task (Baram et al., 2021). The chal-
lenge of constructing or observing the relevant space has proven a hurdle for previous supervised
methods, being unable to discover cognitive maps without a priori knowledge of the represented
covariates. Our model is particularly suited in this setting, offering a targeted method to identify
neural ensembles and summarizing as well as leveraging their shared tuning properties.

1Plato (428-348 BC), Phaedrus 265e; also, Zhuangzi (369-286 BC), Nourishing the Lord of Life.
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More generally, reducing high dimensional nonlinear dynamical systems to a set of latent variables
can have a broad array of possible applications, for instance, in climate sciences, crop forecasting or
flood prediction. Restraining the decoders to interpretable mechanisms and groups of observations
could, also in those cases, help us further our understanding of the underlying processes or relations
between low dimensional summaries and data observations. As for any complex and versatile mod-
ern machine learning method, there also exists a danger of translating the insights from this work
to detrimental purposes and intents. Applications to sensitive data with protected attributes, such as
gender or ethnicity, should pay special attention to the en- and decoding of those attributes in the
learned latent spaces. Therefore, while we do not see any obvious misuse, nor want to explicitly
name any possible malicious purposes, we still strongly discourage any nefarious applications of the
ideas developed in this work. Lastly, we tried to minimize the environmental impact of our research
by performing the hyper-parameter search on the GPU cluster of a carbon-neutral organization.
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more thoroughly in the Appendix (e.g., Appx. A, B, C, J & K).

ACKNOWLEDGMENTS

We thank Erik Hermansen for valuable discussions and feedback related to the grid cell data, as well
as Ta-Chu Kao for fruitful discussions. This work was supported by a Norwegian Research Council
Large-scale Interdisciplinary Researcher Project Grant iMOD (NFR grant no. 325114).

REFERENCES

Thomas D Albright. Direction and orientation selectivity of neurons in visual area mt of the
macaque. Journal of neurophysiology, 52(6):1106–1130, 1984.

Tom Baden, Philipp Berens, Katrin Franke, Miroslav Román Rosón, Matthias Bethge, and Thomas
Euler. The functional diversity of retinal ganglion cells in the mouse. Nature, 529(7586):345–350,
2016.

Xiaojun Bao, Eva Gjorgieva, Laura K Shanahan, James D Howard, Thorsten Kahnt, and Jay A
Gottfried. Grid-like neural representations support olfactory navigation of a two-dimensional
odor space. Neuron, 102(5):1066–1075, 2019.

Alon Boaz Baram, Timothy Howard Muller, Hamed Nili, Mona Maria Garvert, and Timothy Ed-
ward John Behrens. Entorhinal and ventromedial prefrontal cortices abstract and generalize the
structure of reinforcement learning problems. Neuron, 109(4):713–723, 2021.

Mohammad Bashiri, Edgar Walker, Konstantin-Klemens Lurz, Akshay Jagadish, Taliah Muham-
mad, Zhiwei Ding, Zhuokun Ding, Andreas Tolias, and Fabian Sinz. A flow-based latent state
generative model of neural population responses to natural images. Advances in Neural Informa-
tion Processing Systems, 34, 2021.

Eleanor Batty, Josh Merel, Nora Brackbill, Alexander Heitman, Alexander Sher, Alan Litke,
EJ Chichilnisky, and Liam Paninski. Multilayer recurrent network models of primate retinal
ganglion cell responses. In 5th International Conference on Learning Representations, 2017.

James Bergstra and Yoshua Bengio. Random search for hyper-parameter optimization. Journal of
machine learning research, 13(2), 2012.

Max F Burg, Santiago A Cadena, George H Denfield, Edgar Y Walker, Andreas S Tolias, Matthias
Bethge, and Alexander S Ecker. Learning divisive normalization in primary visual cortex. PLOS
Computational Biology, 17(6):e1009028, 2021.

10

https://github.com/david-klindt/NeuralLVM


Published as a conference paper at ICLR 2023

Santiago A Cadena, Fabian H Sinz, Taliah Muhammad, Emmanouil Froudarakis, Erick Cobos,
Edgar Y Walker, Jake Reimer, Matthias Bethge, Andreas Tolias, and Alexander S Ecker. How
well do deep neural networks trained on object recognition characterize the mouse visual system?
2019.

Gunnar Carlsson, Tigran Ishkhanov, Vin De Silva, and Afra Zomorodian. On the local behavior of
spaces of natural images. International journal of computer vision, 76(1):1–12, 2008.

Luis Carrillo-Reid, Jae-eun Kang Miller, Jordan P Hamm, Jesse Jackson, and Rafael Yuste. En-
dogenous sequential cortical activity evoked by visual stimuli. Journal of neuroscience, 35(23):
8813–8828, 2015.
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silicon probes in the anterior thalamus and subicular formation of freely moving mice. CR-
CNS.org. http://dx.doi.org/10.6080/K0G15XS1, 2015b.

Yongrong Qiu, Zhijian Zhao, David Klindt, Magdalena Kautzky, Klaudia P Szatko, Frank Schaeffel,
Katharina Rifai, Katrin Franke, Laura Busse, and Thomas Euler. Mouse retinal specializations
reflect knowledge of natural environment statistics. bioRxiv, 2020.

Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation and ap-
proximate inference in deep generative models. In International conference on machine learning,
pp. 1278–1286. PMLR, 2014.

Alon Rubin, Liron Sheintuch, Noa Brande-Eilat, Or Pinchasof, Yoav Rechavi, Nitzan Geva, and
Yaniv Ziv. Revealing neural correlates of behavior without behavioral measurements. Nature
communications, 10(1):1–14, 2019.

Michael E Rule, Timothy O’Leary, and Christopher D Harvey. Causes and consequences of repre-
sentational drift. Current opinion in neurobiology, 58:141–147, 2019.

Erik Rybakken, Nils Baas, and Benjamin Dunn. Decoding of neural data using cohomological
feature extraction. Neural computation, 31(1):68–93, 2019.

Patrick T Sadtler, Kristin M Quick, Matthew D Golub, Steven M Chase, Stephen I Ryu, Elizabeth C
Tyler-Kabara, Byron M Yu, and Aaron P Batista. Neural constraints on learning. Nature, 512
(7515):423–426, 2014.

Shahd Safarani, Arne Nix, Konstantin Willeke, Santiago Cadena, Kelli Restivo, George Denfield,
Andreas Tolias, and Fabian Sinz. Towards robust vision by multi-task learning on monkey visual
cortex. Advances in Neural Information Processing Systems, 34, 2021.

Francesca Sargolini, Marianne Fyhn, Torkel Hafting, Bruce L McNaughton, Menno P Witter, May-
Britt Moser, and Edvard I Moser. Conjunctive representation of position, direction, and velocity
in entorhinal cortex. Science, 312(5774):758–762, 2006.

Elad Schneidman, Michael J Berry, Ronen Segev, and William Bialek. Weak pairwise correlations
imply strongly correlated network states in a neural population. Nature, 440(7087):1007–1012,
2006.

14

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://arxiv.org/abs/2109.04463
http://dx.doi.org/10.6080/K0G15XS1


Published as a conference paper at ICLR 2023

Lukas Schott, Jonas Rauber, Matthias Bethge, and Wieland Brendel. Towards the first adversarially
robust neural network model on mnist. arXiv preprint arXiv:1805.09190, 2018.
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APPENDIX

A MODEL DETAILS

All models are trained with the Adam optimizer (Kingma & Ba, 2014), a learning rate of 0.001,
temporal chunks of size 128 (64 if data length is smaller than 128) and a batch size of 1. Moreover,
training is concluded after the training objective has not improved for 5 steps (10 for grid cell data).
All models are implemented in Pytorch (Paszke et al., 2019). The architecture of the encoder is as
follows: a 1D grouped convolution with kernel size 9; followed by two layers of 1D convolutions
with kernel size 1 (i.e., effectively just MLPs at each time point) and 64 filters (128 for grid cell
data), followed by a linear projection onto the dimensionality of the mean and variance parameters
required by the variational posterior. The decoder follows the feature sharing tuning curve structure
as presented in the paper. All experiments where executed with specified random seeds for data
generation, model initialisation and training batch selection to maintain complete reproducibilty.

A.1 A FAST APPROXIMATION TO THE OBJECTIVE FUNCTION

Next, we present our simplification of the theoretical setup from (Davidson et al., 2018), concerning
the use of von Mises distributions when inferring latent variables on circular manifolds. First, we
note that as the variance σ2 of a Gaussian and the inverse concentration 1/κ of a von Mises approach
0, they both become delta functions. Moreover, they each define the maximum entropy distribution
for a fixed variance (concentration) in their respective domains. Hence, the von Mises is also referred
to as the circular normal distribution.

We therefore explored the model behavior when replacing the KL term in Eq. (11) with a simpler
expression, akin to the standard VAE KL, which simply pushes the variance of the variational en-
coder towards 1 (i.e., standard normal), but without constraints on the mean (uniform over the latent
space, as the full von Mises prior). Reparameterisation and sampling was then performed by draw-
ing from that Gaussian and adding the scaled perturbation (same as in standard VAEs) to the angle
that the variational posterior returned as mean estimate.

In general, performing variational inference in non-Euclidean spaces is challenging (Falorsi et al.,
2019), which has warranted the use of specialized inference procedures in previous latent variable
models on such manifolds (Davidson et al., 2018; Falorsi et al., 2019; Jensen et al., 2020; 2022). In
this work, we follow the ‘ReLie’ approach outlined by Falorsi et al. (2019) for general Lie groups,
which involves defining a parameterizable (in our case Gaussian) distribution on the tangent space
of the group and projecting it onto the manifold using the so-called ‘exponential map’ of the group.
This approach is particularly simple for the toroidal manifolds we consider, where the projection step
can be achieved by a simple modulo 2π operation (Jensen et al., 2020). This leaves the challenge of
computing the KL term in Eq. 11, which is given by

KL[q(z)|p(z)] = Eq(z) [log q(z)− log p(z)] . (6)

As a prior p(z), we use a unit Gaussian projected onto the circle, with a mean matched to the poste-
rior mean. Since the KL divergence in Eq. 6 is invariant to a rotation around the circle (Falorsi et al.,
2019), we can compute it simply as the KL divergence between two wrapped Gaussian distributions
centered at the origin with variances σ2

q and σ2
p = 1 respectively. In general, the projected densities

needed in Eq. 6 are given by

qθ(z) =
∑

x∈R : expG (x)=z

rθ(x)|J(x)|−1, (7)

as derived in Falorsi et al. (2019). Here, expG is the exponential map, J(x) is the Jacobian at x in
the tangent space, and rθ is the parameterized reference distribution on the tangent space.

For the circle, the Jacobian is simply given by the identity J(x) = 1 ∀x. With a zero-centered
Gaussian reference distribution, we can therefore rewrite Eq. 7 as

qθ(z) =
∑
k∈Z

N (z + 2kπ;µ = 0, σ2
q ), (8)
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and similarly for the prior p(z) (Jensen et al., 2020). To approximate this infinite sum, it is necessary
to truncate it after a finite number of elements (Falorsi et al., 2019; Jensen et al., 2020; 2022). In
the case where σq ≪ 1, it is sufficient to use a single term since there is negligible probability mass
outside the area of injectivity ([π, π]). This is in fact the regime we are operating in, since less than
0.2% of the prior probability mass falls outside the interval [−π, π], and the posterior variance will
in general be smaller than the prior variance.

Additionally, while the integral in Eq. 6 covers the domain [−π, π], we can approximate it with
an integral from −∞ to ∞ since the posterior probability mass outside the area of injectivity is
negligible,

∫∞
x=π

N (x; 0, σ2
q )dx ≈ 0. These approximations together imply that we can simply

approximate the KL term in Eq. 6 as the KL between our prior and posterior Gaussians directly in
the tangent space, and we verified numerically that this approximation is excellent for σ2

q ≤ 1. We
thus obtain a simple analytical expression for the KL:

KL[q(z)|p(z)] ≈ KL
[
N (z; 0, σ2

q )|N (z; 0, 1)
]

(9)

=
1

2

(
σ2
q − 1− log σ2

q

)
. (10)

Note that this is only possible because our prior is localized, in contrast to previous work which
often uses a more diffuse or even uniform prior distribution (Falorsi et al., 2019; Jensen et al., 2020),
and because we consider circular latent spaces where the Jacobian is 1. Since our prior and posterior
both factorize across dimensions, these considerations also generalize to higher dimensional spaces,
where the multivariate KL divergence is simply the sum across dimensions of the corresponding
univariate KL divergences.

Finally, to verify that these approximations do not affect our results or conclusions, we repeated
several key analyses with the variational inference framework described in Davidson et al. (2018).
The simplified setup trained about 5× faster, while behaving nearly identically on all test cases that
we evaluated, hence, all experiments in the paper are performed with the simplified objective. We
note that this simplified procedure may be of interest to those who might need to iterate over models
without access to a large compute cluster.

B DATA GENERATION FOR SIMULATIONS

When conducting the experiments that showcase the scaling of various models with respect to the
amount of data (Sec. 4.1), we generate the spikes according to Gaussian-like tuning curves. More
specifically, we assume a common shape for each curve (location assigned randomly on S1), with a
tuning width of 1.2 radians. Peak rates are set to 0.5 spikes per bin, the background rate to 0.005,
with a signal-to-noise ratio of 1 for the Poisson noise. The latent variable is simulated according to
a Gaussian process with kernel standard deviation equal to 5.0, and with kernel scale 50.0. It is then
projected onto S1 via the modulo operation. The ensemble detection experiments in Sec. 4.2 use the
same data generation, only with multiple (2 or 3) ensembles, with distinct latent varibles for each
ensemble.

C ENSEMBLE DETECTION COMPARISONS

For raw-pca, we performed k-means clustering on dimensionally reduced neural activity over time
(loosely inspired by Lopes-dos Santos et al., 2011; Baden et al., 2016; Hamm et al., 2021). Specif-
ically, we took the projection of the spike matrix onto its first 8 (cross-validated) principal compo-
nents. We then computed k-means clustering on this reduced matrix with the standard scikit-learn
implementation, using a fixed number of 2 (3, depending on the setting) clusters, 100 initializations
and 1000 maximum iterations.

For cov-pca, we performed clustering on the neural covariance matrix (loosely inspired by Carrillo-
Reid et al., 2015). Specifically, we computed the covariance across neurons from the spike matrix.
Again, we computed the first 8 (cross-validated) principal components of the absolute value of this
covariance matrix. The absolute value was taken to preserve any negative or positive dependencies
across neurons, as one would presumably observe within an ensemble — removing the modulus
operator drastically reduced ensemble detection accuracy. From the projection onto the principal
components we proceeded again as above. We also performed a clustering of the inverse of the
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covariance matrix, as a first order approximation to an Ising model (Schneidman et al., 2006), but
this approach did not yield results above chance level, hence it was not included in the figures.

Finally, for the supervised method we performed clustering on the mutual information score (see
scikit-learn for implementation) between each neuron’s activity, and the true latent variables, as
input. Specifically, the features y that were used as input to k-means (same settings as above)
were yij ∼ I[xi; zj ] for every neuron i and every ground truth latent dimension j. This presents
an upper bound to the achievable performance, since it assumes supervised knowledge of the true
latent variable values.

D THE EVIDENCE LOWER BOUND (ELBO)

Here we show the derivation of the ELBO, which is maximized as part of the objective function
during the model training procedure

log p(x) = log

∫
p(x|z)p(z)dz = log

∫
p(x|z)p(z)q(z|x)

q(z|x)
dz

= logEz∼q(z|x)

[
p(x|z) p(z)

q(z|x)

]
Jensen’s inequality

≥ Ez∼q(z|x)

[
log p(x|z) p(z)

q(z|x)

]
= Ez∼q(z|x) [log p(x|z)]︸ ︷︷ ︸

=:Lrec(x,z)

−Ez∼q(z|x) [log q(z|x)− log p(z)]︸ ︷︷ ︸
= KL(q(z—x)—p(z))

=: ELBO(q).

(11)

D.1 TEMPORAL TRANSITION PRIORS

All experiments in the article are conducted using the objective function from Eq. 11. Extending this
with additional terms however, e.g. by including a Laplacian temporal transition prior (Klindt et al.,
2021) or a Gaussian transition prior (i.e. an L1 or L2 penalty across latent time steps, respectively)
is relatively simple, and both the L1 and L2 penalties are included as optional regularization terms
in our model. While exhaustive experiments have not been performed regarding these priors, results
seem to indicate that the inclusion of these priors do little to improve the model performance in the
settings we have studied in the article, which is in agreement with results in Appendix Section E and
K regarding the convolutional kernel size.

E ABLATION STUDY — CONVOLUTIONAL FILTER

As mentioned in Sec. 4.1, we conduct a similar model performance comparison between the
faeLVMs and mGPLVM, while reducing the kernel size of the convolutional layer for the faeLVMs
to 1 (effectively allowing the encoder network to let the variational posterior only depend on the
instantaneous neural population activity). This is done to reduce the potential gap in information
content available between a convolutional and a non-convolutional model. Note, however, that this
applies only to the variational posterior. At inference time, both models infer the best latent at each
point in time separately. Experimental settings are precisely the same as those in Sec. 4.1, other
than the size of the convolutional kernel.

One of the main observations from Fig. 8C-D is that the faeLVMs still outperform mGPLVM, even
without contributions from the convolutional kernel. In fact, faeLVM-s performs much better now,
compared with the results from Fig. 4, achieving results that rivals those of faeLVM-b (Fig. 8A-B)

F MODEL EXTENSION — CALCIUM RESPONSES AND VISUAL DATA
SIMULATION

In an effort to improve on the applicability of faeLVM, and showcase its relevance regarding appli-
cations to different brain regions, different latent topologies and different input data, we include a
toy example on visual data, where we modeled a moving dot stimulus (Fig. 9A) and a population
response of retinal ganglion cells with center surround receptive fields and Poisson spiking (Fig.
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Figure 8: Model performance comparison, with convolutional filter size 1. The models faeLVM-
n,s,b are described in the main text, mGP is the model from Jensen et al. (2020). A, Mean NLLH
(negative log-likelihood, lower is better) of predicted test neuron rate, as a function of amount of
training neurons. As the performance is averaged over 20 seeds of varying data, error bars would
also reflect the variability in NLLH across data, resulting in inappropriate visualization. Hence, we
report the mean rank of 20 seeds for each model at each condition, in an effort to more appropriately
capture the variability of the models. B, Same as in A, now as a function of training time points. C,
Mean GE (geodesic error, lower is better) between true latent and inferred latent, on test data, with
corresponding SEM error bars, as a function of number of training neurons. D, Same as in C, now
as a function of amount of training time points.

Figure 9: Visual data, toy example. A, Scatter plot of trajectory of simulated visual stimulus,
colored according to its temporal evolution. B, Receptive fields for three training neurons. C, Same
three training neurons, showing firing rate in shaded dark blue and the corresponding Poisson spikes
in orange. D, Neural responses after passing the neural activity from C through a calcium kernel. E,
Scatter plot of true latent trajectory against inferred latent trajectory (variational mean). F True Ca2+
neural responses (grey) plotted against predicted neural responses for three test neurons (black).

9B-C). Each neuron’s spiking response was then convolved with a double exponential calcium flu-
orescence kernel (Fig. 9D). We further extended faeLVM by including a Gaussian likelihood as a
modeling option, as well as an option to infer latent trajectories not restricted to circular and toroidal
latent manifolds.

Results can be seen in Fig. 9E-F, where the model is able to infer the correct two-dimensional latent
variable, as well as accurately predict calcium responses of test neurons on test data. Although this
experiment is less comprehensive, being a toy example, it still gives a clear indication that our model
is also applicable to both calcium traces and non-grid and head direction cells.

G ALL GRID CELL RATE MAPS

In this section, we showcase rate maps for all neurons in each of the two ensembles (149 and 145
neurons in the first and second grid cell module respectively). The data used is the same as discussed
in Sec. 4.4, pre-processed in the same way, and we used the same model to produce latent decodings,
receptive fields and ensembles.

Fig. 10 and Fig. 11 show the rate maps (using 50 × 50 spatial bins, smoothed for visualization
purposes in the same manner as Gardner et al. (2022), with a Gaussian kernel of smoothing width
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Figure 10: All rate maps, first grid cell module.
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Figure 11: All rate maps, second grid cell module.
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Figure 12: Supplementary visu-
alizations for analyses on real
datasets. A, Recorded mouse head
direction (’True HD’) and inferred
latent trajectories on test data. Re-
sults from the experiment on head
direction data, Sec. 4.3. B, Dy-
namics of the inferred toroidal co-
ordinates plotted as a function of the
(x, y) spatial position of the animal
(two tori, each with two circular co-
ordinates, hence four figures). Re-
sults from the experiment on grid
cell data, Sec. 4.4.

2.75), both as function of spatial position and inferred toroidal coordinates. For the rate maps in
torodial coordinates, we also include the inferred receptive field center and width. Neural rate maps
are shown in decreasing spatial information content (Skaggs et al., 1992; Gardner et al., 2022), going
from left to right, top to bottom.

As mentioned in Sec. 4.4, we clearly see the more ambiguous rate maps at the bottom of these two
figures (in particular, the three-four bottom-most rows). Here, the spatial resolution is not as distinct
as for the more informative neurons, and the rate maps less clear, for which one might surmise that
these neurons need not necessarily belong to the module originally assigned to.

H ADDITIONAL VISUALIZATIONS FOR HEAD DIRECTION AND GRID CELL
DATA

To supplement the results shown in Sec. 4.3 and Sec. 4.4, we have included additional figures for
both the head direction application and the grid cell application. More precisely, Fig. 12A shows the
inferred variational mean of faeLVM-n plotted against the recorded mouse head direction (now as
trajectories, in contrast to the scatterplot in Fig. 6A, while Fig. 12B shows inferred latent dynamics
on grid cell data, as function of spatial position. As there is no way of recording the ’true’ toroidal
coordinates (akin to what is done in the head direction dataset), this figure is included in an effort
to demonstrate the clear correspondence between each of the inferred toroidal axes and the spatial
position, with the results being in agreement with what was found in Gardner et al. (2022).

I EXTENDED ENSEMBLE DETECTION SIMULATION

In this section we present an additional experiment related to the ensemble detection task. Namely,
we ask the model to separate five distinct ring-like ensembles, zj ∈ S1, to complement the experi-
ments from Section 4.2, which only considered two and three ensembles.

From Fig. 13, we can see that faeLVM-b is able to separate the five ensembles quite clearly. The
weights in Fig. 13A is approaching the desired one-hot encoding, and we see that the five inferred
ensembles correspond very nicely with the true ensembles (Fig. 13C). The model is also able to
accurately predict spike rates on held out neurons from each ensemble (13B). Thus, this simulation
provides evidence that our model is also able to work on more challenging ensemble separation
tasks, and is not only limited to lower ensemble numbers.

J HYBRID INFERENCE

J.1 OVERVIEW

Here, we give an overview on how the hybrid inference is performed. In contrast to the traditional
variational approach, where one uses a single sample from the variational posterior as prediction for
the latent variable, we propose drawing a selection of samples, then performing gradient descent on
said latents using the Adam optimizer. Specifically, if z are the latents for the test set (as inferred by
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Figure 13: Ensemble detection of 5 circles. A, Learned ensemble weights for the neurons belong-
ing to five unique circular ensembles. B, True spike rate (grey) vs predicted spike rate (black) for for
five randomly selected test neurons, one from each ensemble. C, Scatter plot of true latent trajectory
against inferred latent trajectory.

the encoder and variational posterior) and x the responses of the training neurons on the test set, we
maximize

z∗ = max
z

log p(x|z) (12)

for 2000 steps with the Adam optimizer and a learning rate of 0.001. We perform this in parallel
on M = 10 distinct samples from the variational posterior and pick the one with the highest final
likelihood (note that all samples usually converge to the same value). We emphasize that all model
parameters are fixed during hybrid inference, and the optimization only affects the sampled latents.

Empirically, we observe that this not only improves the likelihood for the training neurons (i.e., the
objective we are maximizing), but crucially also the likelihood of the test neurons. This means that
we are not just overfitting but actually improving our point estimates of the latents in this inference
procedure. We leave optimization of the full likelihood, including uncertainty estimates on the
latents, for future research.

J.2 HYBRID INFERENCE SIMULATIONS

For evaluate of the performance gain with hybrid inference at test-time, we consider six variations
of the faeLVM; that being the three cases described in Sec. 3, each alternative including a case of
using hybrid inference and one using the standard variational posterior approach (fae vs v-fae).

As in Sec. 4.1, we divide our data into four parts (Fig. 3), generate a 1D periodic latent variable
and simulate spikes according to a Poisson distribution with Gaussian tuning curves. We fix Ttest
and Ntest (1000 and 30), vary Ttrain and Ntrain over a selection of values, and for each condition,
repeat the experiment over 20 seeds (synthetic data is different for each seed, but all of the models
are trained on the same dataset, to ensure that comparisons are still valid), reporting mean negative
log-likelihood (NLLH) and mean geodesic error (GE) on test data.

The results presented in Table 1 indicate that performance, in almost every case, increases substan-
tially by including the hybrid inference step. Hence, all other experiments performed in this article
are done solely using the hybrid inference where applicable (e.g., when applying the model to grid
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Table 1: Hybrid inference comparison. Table showing mean negative log-likelihood (NLLH) and
mean geodesic error (GE) for the six models specified (lower is better for both criterions), under
varying amounts of synthetically generated training data with different numbers of training neurons
(N ) and different training dataset lengths (T ).

N / T 30 / 100 30 / 500 30 / 1000 15 / 1000 45 / 1000

LVM NLLH GE NLLH GE NLLH GE NLLH GE NLLH GE

v-fae-n 12745 0.57 8971 0.28 8781 0.27 9110 0.45 8642 0.27
v-fae-s 11798 0.64 9167 0.34 8949 0.31 9718 0.40 8820 0.31
v-fae-b 10912 0.50 9152 0.36 8830 0.30 9492 0.33 8633 0.26

fae-n 11975 0.58 8775 0.20 8608 0.17 9018 0.44 8415 0.09
fae-s 10963 0.42 8694 0.13 8657 0.14 9460 0.29 8491 0.13
fae-b 10040 0.25 8636 0.12 8501 0.12 9227 0.23 8267 0.05

cell data, evaluations are done in-training-sample, and without the focus on latent prediction on a
test set, hence there is no need for hybrid inference at test-time).

K HYPERPARAMETER SEARCH

To investigate hyperparameters and their effect, we selected relevant parameters and estimated their
ranges based on related literature. The relevant parameters can be seen on the left in Table 2.

To determine optimal values of hyperparameters, we relied on a random search strategy. A grid
search is not feasible due to the curse of dimensionality, and a random search can also be more
effective (Bergstra & Bengio, 2012). Furthermore, the random search can easily be used for discrete
and continuous variables, that could be on linear or logarithmic scales. The selected scales and
ranges, can be found in the middle in Table 2.

In total, we sample 500 hyperparameter configurations. Next, we train and test each configuration
for 3 random seeds. We evaluate the models on the test accuracy and mean correlation. The final
selected model is shown on the far right in Table 2.

Lastly, we also measure whether there is an ordinal correlation (Spearman) between the varied fac-
tors and the test LLH. The results are shown in Fig. 14. We see that learning the variance (learn var)
increases the performance on average. Also, lower learning rates and larger batch-sizes lead to better
results. Lastly, also lower weighting for the KL term leads to better results.
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Table 2: Hyperparameter search. We show our selected hyperparameters and their corresponding
ranges.

Hyperparameter Ranges Best

kernel size choice([1, 9, 17]) 1
num hidden choice([16, 32, 64, 128, 256, 512]) 128
shared choice([True, False]) False
learn coeff choice([True, False]) True
learn mean choice([True, False]) False
learn var choice([True, False]) False
isotropic choice([True, False]) False
num basis choice([1, 2, 4, 8]) 4
nonlinearity choice([exp, softplus]) softplus
batch size choice([1, 16, 32]) 32
batch length choice([64, 128]) 64
learning rate loguniform(1e-4, 1e-1) 0.001003
num worse choice([10, 50, 100]) 10
weight kl choice([0., loguniform(1e-9, 1e0)]) 0.0
weight time choice([0., loguniform(1e-9, 1e0)]) 0.0
weight entropy choice([0., loguniform(1e-9, 1e0)]) 0.0

Figure 14: Correlations with test LLH. A, Spearman correlation. B, P-values.
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